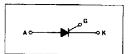
New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

Silicon Controlled Rectifiers Reverse Blocking Triode Thyristors


... designed for industrial and consumer applications such as power supplies; battery chargers; temperature, motor, light, and welder controls.

- Economical for a Wide Range of Uses
- High Surge Current ITSM = 550 Amps
- Rugged Construction in Either Pressfit, Stud, or Isolated Stud
- Glass Passivated Junctions for Maximum Reliability

MAXIMUM RATINGS (TJ = 25°C unless otherwise noted.)

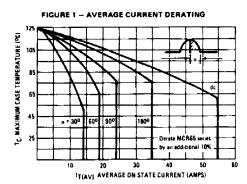
SCRs 55 AMPERES RMS 50 thru 800 VOLTS

Rating		Symbol	Value	Unit
Peak Repetitive Forward and Reverse Blockin	ng Voitage,	VDRM		Volts
Note 1 (T_j = 25 to 125°C, Gate Open)	2	or	50	-
MCR63-()A	3	VRRM	100	}
MCR64-	4		200	
MCR65-	6		400	
	8		600	
	10		800	L
Non-Repetitive Peak Reverse Blocking Voltag	e	VRSM		Volts
(t ≪ 5 ms), Note 1	2		75	
MCR63-()A	3	1	150	
MCR64-	4	1	300	
MCR65-	6		500	
	8		700	
	10	L	900	
Forward Current RMS		IT(RMS)	55	Amps
Peak Surge Current		ITSM	550	Amps
(One Cycle, 60 Hz, $T_J = -40$ to $+125^{\circ}$ C)		I.		
Circuit Fusing Considerations (t = 8.3 ms)		1 ² t	1255	A ² s
Peak Gate Power		PGFM	20	Watts
Average Gate Power (Pulse Width $\leq 2 \mu s$)		PGF(AV)	0.5	Watt
Peak Forward Gate Current		IGFM	2	Amps
Peak Gate Voltage Forward		VGFM	10	Volts
Reverse		VGRM	10	
Operating Junction Temperature Range		Тј	-40 to +125	°C
Storage Temperature Range		T _{stg}	-40 to +150	°C
Stud Torque		_	30	in, lb,

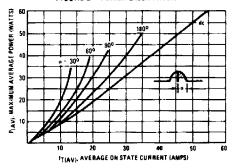
te 1. VORM and VRRM for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors


MCR63-()A Series • MCR64 Series • MCR65 Series

THERMAL CHARACTERISTICS


Characteristic	Symbol	Mex	Unit
Thermal Resistance, Junction to Case	Rajc		°c∧w
Pressfit and Stud		1	1
Isolated Stud		1.1	1

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Peak Forward or Reverse Blocking Current (VAK = Rated VDRM or VRRM, Gate Open)	Тј = 25°С Тј = 125°С	^I DRM ^{, I} RRM	=	10 2	μA mA
Forward "On" Voltage (I _{TM} = 175 A Peak)		∨тм	-	2	Volts
Gate Trigger Current (Continuous dc) $(V_D = 12 V, R_L = 50 \Omega)$	$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = -40^{\circ}{\rm C}$	IGT	-	40 75	mA
Gate Trigger Voltage (Continuous dc) $(V_D = 12 V, R_L = 50 \Omega)$ $(V_D = Rated V_{DRM}, R_L = 1 k\Omega, T_J = 125°C)$	T _C = 25°C T _C = ~40°C	VGT	 0.2	3 3.5 	Volts
Holding Current $\{V_D = 12 V, R_L = 50 \Omega, Gate Open\}$		Ч	-	60	mA
Forward Voltage Application Rate {Tj = 125°C, VD = Rated VDRM}		dv/dt	50	-	V/µs

FIGURE 2 - POWER DISSIPATION

